language-icon Old Web
English
Sign In

Geochemistry

Geochemistry is the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans.:1 The realm of geochemistry extends beyond the Earth, encompassing the entire Solar System, and has made important contributions to the understanding of a number of processes including mantle convection, the formation of planets and the origins of granite and basalt.:1 d C d t = a − k C . {displaystyle {frac {dC}{dt}}=a-kC.}     (1) Geochemistry is the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans.:1 The realm of geochemistry extends beyond the Earth, encompassing the entire Solar System, and has made important contributions to the understanding of a number of processes including mantle convection, the formation of planets and the origins of granite and basalt.:1 The term geochemistry was first used by the Swiss-German chemist Christian Friedrich Schönbein in 1838: 'a comparative geochemistry ought to be launched, before geochemistry can become geology, and before the mystery of the genesis of our planets and their inorganic matter may be revealed.' However, for the rest of the century the more common term was 'chemical geology', and there was little contact between geologists and chemists. Geochemistry emerged as a separate discipline after major laboratories were established, starting with the United States Geological Survey (USGS) in 1884, and began systematic surveys of the chemistry of rocks and minerals. The chief USGS chemist, Frank Wigglesworth Clarke, noted that the elements generally decrease in abundance as their atomic weights increase, and summarized the work on elemental abundance in The Data of Geochemistry.:2 The composition of meteorites was investigated and compared to terrestrial rocks as early as 1850. In 1901, Oliver C. Farrington hypothesised that, although there were differences, the relative abundances should still be the same. This was the beginnings of the field of cosmochemistry and has contributed much of what we know about the formation of the Earth and the Solar System. In the early 20th century, Max von Laue and William L. Bragg showed that X-ray scattering could be used to determine the structures of crystals. In the 1920s and 1930s, Victor Goldschmidt and associates at the University of Oslo applied these methods to many common minerals and formulated a set of rules for how elements are grouped. Goldschmidt published this work in the series Geochemische Verteilungsgesetze der Elemente .:2 Some subfields of geochemistry are: The building blocks of materials are the chemical elements. These can be identified by their atomic number Z, which is the number of protons in the nucleus. An element can have more than one value for N, the number of neutrons in the nucleus. The sum of these is the mass number, which is roughly equal to the atomic mass. Atoms with the same atomic number but different neutron numbers are called isotopes. A given isotope is identified by a letter for the element preceded by a superscript for the mass number. For example, two common isotopes of chlorine are 35Cl and 37Cl. There are about 1700 known combinations of Z and N, of which only about 260 are stable. However, most of the unstable isotopes do not occur in nature. In geochemistry, stable isotopes are used to trace chemical pathways and reactions, while isotopes are primarily used to date samples.:13–17 The chemical behavior of an atom – its affinity for other elements and the type of bonds it forms – is determined by the arrangement of electrons in orbitals, particularly the outermost (valence) electrons. These arrangements are reflected in the position of elements in the periodic table.:13–17 Based on position, the elements fall into the broad groups of alkali metals, alkaline earth metals, transition metals, semi-metals (also known as metalloids), halogens, noble gases, lanthanides and actinides.:20–23 Another useful classification scheme for geochemistry is the Goldschmidt classification, which places the elements into four main groups. Lithophiles combine easily with oxygen. These elements, which include Na, K, Si, Al, Ti, Mg and Ca, dominate in the Earth's crust, forming silicates and other oxides. Siderophile elements (Fe, Co, Ni, Pt, Re, Os) have an affinity for iron and tend to concentrate in the core. Chalcophile elements (Cu, Ag, Zn, Pb, S) form sulfides; and atmophile elements (O, N, H and noble gases) dominate the atmosphere. Within each group, some elements are refractory, remaining stable at high temperatures, while others are volatile, evaporating more easily, so heating can separate them.:17:23

[ "Geology", "Kalinite", "Borolanite", "Devonian", "Denudation", "Geological Concepts" ]
Parent Topic
Child Topic
    No Parent Topic